Antimony Compounds

DOI: 10.1002/anie.200702603

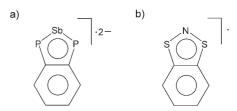
Formation and Structure of the [(1,2-C₆H₄P₂Sb)₂]⁴⁻ Ion: Implications for an Extended Family of Isoelectronic Main-Group Radicals**

Felipe García, Robert J. Less, Vesal Naseri, Mary McPartlin, Jeremy M. Rawson,* and Dominic S. Wright*

We have previously developed a strategy for the preparation of heterometallic main-group imido (RN^{2-}) and phosphinidene (RP^{2-}) compounds involving stepwise deprotonation of REH₂ (E=N,P) with alkali-metal organometallics (for example nBuLi), followed by reaction with M(NMe₂)_n (M = As, Sb, Bi, n=3; Sn n=2; Scheme 1).^[1] Recently, however, we have

$$R - E \xrightarrow{H} \xrightarrow{nBuLi} R - E \xrightarrow{H} \xrightarrow{M(NMe_2)_n} R - E \xrightarrow{M}$$

Scheme 1. Stepwise deprotonation of amines (E=N) and phosphines (E=P). M=As, Sb, Bi, n=3; Sn n=2; R= aliphatic or aromatic group


recognized the behavior of this type of mixed-metal system as superbases. This effect was first apparent in the reaction of MesPH2 (Mes=2,4,6-Me3C6H2) with Sn(NMe2)2/PhCH2Na, which gives the unusual stannate ion [Sn{P(2-CH2-4,6-Me2C6H2)){PMes}]^{3-[3]} as a result of deprotonation of a PH2 group and an *ortho*-CH3 group. Remarkably, quadruple deprotonation of the PH2 and NH2 groups occurs in 1-NH2-2-PH2-C6H4 (LH4) using a similar Sn(NMe2)2/nBuLi mixture, giving the paramagnetic complex [({(L)Sn-(NMe2)Li-THF}{(L)SnLi-3THF}Sn)2] containing the L4- tetraanion and L3- radical. The superbase of the

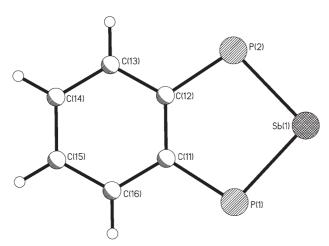
Herein we report the reaction of 1,2-(PH₂)₂C₆H₄ with Sb(NMe₂)₃/nBuLi, which results in the complete deprotonation of the PH₂ groups, giving the 6π -aromatic anion [1,2-C₆H₄P₂Sb]⁻. Upon one-electron reduction, the [1,2-C₆H₄P₂Sb]₂⁴⁻ tetraanion is formed. As established from DFT calculations, this highly charged, Sb–Sb-bonded distibane is best described as a dimer of two 7π -[1,2-C₆H₄P₂Sb]²⁻ radicals (Scheme 2a) and is valence-isoelectronic with the important class of sulfur/nitrogen-based thiazolyl radicals (Scheme 2b).^[5]

[*] F. García, Dr. R. J. Less, V. Naseri, Prof. M. McPartlin, Dr. J. M. Rawson, Dr. D. S. Wright Chemistry Department Cambridge University Cambridge CB21EW (UK) E-mail: jmr31@cam.ac.uk. dsw1000@cam.ac.uk

[**] We gratefully acknowledge the EPSRC (R.S.L., V.N., M.McP., J.M.R., D.S.W.), Wolfson College Research Fellowship, Newnham and Trinity Colleges, Cambridge (College Lectureship for F.G.) for financial support.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

 $\mbox{\it Scheme 2.}$ Comparison of a) the $[1,2\text{-}C_6H_4P_2Sb]^{*2^-}$ radical and b) thiazolyl radical


Lithiation of $1,2-(PH_2)_2C_6H_4$ (1 equiv) with nBuLi(2 equiv) in tmeda (tmeda = $Me_2NCH_2CH_2NMe_2$) followed by reaction with Sb(NMe₂)₃ (0.67 equiv) gives [Li- $(\text{tmeda})_2$]⁺[1,2-C₆H₄P₂Sb]⁻ (1) after crystallization from THF/tmeda. However, black crystals of [{1,2-C₆H₄P₂Sb}₂{Li-(tmeda)}4] (2)^[6] are obtained if this reaction is undertaken in toluene and the product crystallized from toluene/tmeda. Compound 2 presumably arises from one-electron reduction of the 6π -aromatic anion of 1 (Scheme 3). The diamagnetic nature of 2 persists in the solid state and in dilute solutions in toluene as a result of spin-pairing of the electrons within the Sb-Sb-bonded dimer, as shown by the structural characterization (see below). This situation contrasts with the behavior of valence-isoelectronic dithiazolyl dimers, for which a dissociation energy of about 0 kJ mol⁻¹ results in extensive dissociation in solution.^[5]

A few other related 6π -aromatic Group 15 anions have been reported; notably, the coordination chemistry of the 6π -benzatriazolyl ion, $[1,2\text{-}C_6H_4N_3]^-$, which is valence-isoelectronic with the $[1,2\text{-}C_6H_4P_2Sb]^-$ ion of $\mathbf{1}$, has been investigated extensively. However, the only representative of this type for the heavier Group 15 elements is the 6π -diaraarzoyl anion $[1,2\text{-}C_6H_4N_2As]^-$, which is obtained by the unusual reaction of the lithiate of $1,2\text{-}C_6H_4(NH_2)_2$ with $(Me_2N)_2AsCH_2As(NMe_2)_2$. To our knowledge, however, one-electron reduction of this type of species has never been detected previously for Group 15 or elsewhere in the p block, except in sulfur/nitrogen chemistry.

The low-temperature solid-state structures of **1** and **2** were both obtained. [9] After many attempts, only one very limited data set was obtained for **1**. Although the structural parameters involved should be treated with caution, the nature of the complex has been determined unequivocally, being composed of [Li(tmeda)₂]⁺ and 6π -aromatic [1,2-C₆H₄P₂Sb]⁻ ions (Figure 1). The atoms within each of the four independent C₂P₂Sb rings are almost exactly coplanar (maximum deviation 0.020 Å), as expected for the conjugation of all of the p orbitals throughout this ring. The small angle at antimony [mean 93.7°] is consistent with the lone pair on

Communications

Scheme 3. Synthesis of 2.

Figure 1. Structure of the $[C_6H_4P_2Sb]^-$ ion in the $[Li(tmeda)_2]^+$ salt of 1. Only one of the four independent anions in the unit cell is shown.

antimony having predominantly s character and with the antimony p orbitals being used in σ and π bonding. The presence of $p\pi-p\pi$ bonding together with the low coordination number of the antimony center results in particularly short Sb–P bonds (mean 2.30 Å), which are considerably shorter than those detected in three-coordinate, σ -bonded Sb^{III} phosphinidenes [2.489(3)–2.593(1) Å]. [10–12]

The solid-state structure of **2** is that of a dimer, formally composed of two $[1,2-C_6H_4P_2Sb]^{*2-}$ radicals which are associated in a *cisoid* (cofacial) arrangement (Figure 2). The two nearly coplanar phenyl rings are almost eclipsed with respect to each other, with their centroids separated by 3.72 Å. Valence-isoelectronic dithiazolyl radicals commonly dimerize by a similar *cisoid* mode, ^[13] involving $2e^-\pi\pi$ interaction of the singly occupied molecular orbitals (SOMO) of each monomer between their S=N=S units. ^[14] In **2**, however, the build-up of negative charge on the phosphorus centers leads to the apparent predominance of Sb-Sb bonding. The P···P contacts in **2** (4.22–4.27 Å) are far longer than expected even for van der Waals interactions (3.8 Å), ^[15] whereas the Sb-Sb

distance [2.9711(3) Å] is only slightly greater than the range of values reported for structurally authenticated single bonds. [16] In addition, the antimony atoms within the C₂P₂Sb heterocyclic rings bend towards each other (folding by 28.6° at the P···P vector) to promote metal-metal bonding. Bearing in mind the large electronic repulsion between the highly charged phosphorus centers, it is difficult to see why a cisoid structure should be preferred over an apparently sterically favored trans conformation.^[17] A possible explanation for this result is the reinforcing effect of interdimer bridging by the tmeda-chelated Li+ ions Li(3) and Li(4) [Li-P 2.525(6)-2.547(5) Å]. The other two Li⁺ ions, Li(1) and Li(2), span the anionic phosphorus atoms within the monomer units of 2 [Li-P 2.580(6)-2.595(5) Å] and are involved in relatively short interactions with the two carbon atoms of the C₂P₂Sb unit [C...Li 2.650(6)–2.730(6) Ål.

Model DFT calculations [18] show that addition of one electron to the HOMO of the 6π anion of 1 (Figure 3a) gives a SOMO in 2 (Figure 3b) in which 92% of the unpaired spin density is found on the phosphorus and antimony atoms. This result is accompanied by an increase in the Sb–P bond lengths and a reduction in the P-Sb-P angle,

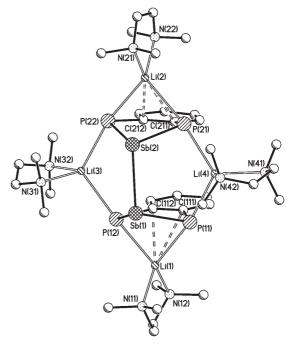


Figure 2. The dimeric structure of 2 in the toluene solvate (hydrogen atoms and toluene not shown for clarity). Selected bond lengths [Å] and angles [°]: Sb(1)-P(11) 2.4915(9), Sb(1)-P(12) 2.4932(8), Sb(1)-Sb(2) 2.9711(3), Sb(2)-P(21) 2.4962(9), Sb(2)-P(22) 2.4988(9), P(11)-Li(1) 2.595(5), P(12)-Li(1) 2.591(6), Li(1)-C(111) 2.717(6), Li(1)-C(112) 2.730(6), P(21)-Li(2) 2.582(6), P(22)-Li(2) 2.580(6), Li(2)-C(211) 2.690(6), Li(2)-C(212) 2.650(7), P(12)-Li(3) 2.540(6), P(22)-Li(3) 2.547(5), P(11)-Li(4) 2.538(5), P(21)-Li(4) 2.525(6); P-Sb-P mean 87.40, Sb-Sb-P mean 104.8, C-P-Sb mean 98.5, P-Li(1/2)-P 83.6, P-Li(3/4)-P 113.6, mean folding of C_2P_2 Sb ring units about the P···P vectors, 28.6°.

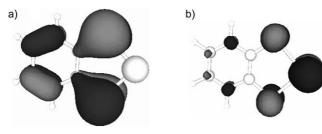


Figure 3. a) The HOMO of 1; b) the SOMO of 2 (the LUMO of 1).

both closely reflecting the experimental observations. The dimeric parent tetraanion [(H₂C₂P₂Sb)₂]⁴⁻ was chosen for further study, for calculational simplicity. A stable $C_{2\nu}$ symmetric π^* - π^* -bonded $[(H_2C_2P_2Sb)_2]^{4-}$ dimer could not be found on the potential energy surface, and attempts at optimization resulted in the 7π -radical units moving apart because of substantial electrostatic repulsion. However, if the four Li⁺ ions present in the structure of 2 are included the optimized structure is similar to the actual solid-state arrangement. The absence of Lewis base solvation of Li+ ions results in shorter Sb...Li contacts and longer Sb-Sb bonds than found experimentally. Despite this result, however, the DFT calculations clearly reveal that association into a dimer is largely due to bonding to the Li⁺ counterions rather than Sb-Sb bonding (that is, a dimer of two radicals associated mainly by electrostatic interactions). The large energy calculated for dimerization of the ion-paired monomer to the dimer ($[Li_2\{H_2C_2P_2Sb\}]$ $\rightarrow [Li_4\{H_2C_2P_2Sb\}_2]$, -129.4 kJ mol⁻¹) explains why, in contrast to the valenceisoelectronic dithiazolyl dimers, no observable 7π radical is found in solution or in the solid state for 2.

In summary, this study has shown for the first time that one-electron reduction of 6π -aromatic anions, such as 1, is possible, suggesting that this phenomenon might be a general for related main-group heterocycles. Although—as in 2—the resulting species may not have fully developed radical character as a result of large (electrostatically induced) association energies, the results reported herein provide a key insight into the potential existence of an extensive family of materials that are valence-isoelectronic with well-known thiazolyl radicals.

Experimental Section

All manipulations were undertaken under dry O₂-free argon. 1: nBuLi (1.6м solution in hexanes, 0.61 mL, 0.97 mmol) was added dropwise to a solution of 1,2-(PH₂)₂C₆H₄ (69 mg, 0.49 mmol) in tmeda (5.0 mL) at 0 °C. The resulting yellow suspension was allowed to warm to room temperature and stirred for 30 min. The reaction mixture was cooled to 0 °C and a solution of Sb(NMe₂)₃ (2.0 M solution in toluene, 0.16 mL, 0.33 mmol) was added, giving an orange precipitate which was stirred for a further 30 min at room temperature. The precipitate was dissolved by the dropwise addition of THF, and the resulting deep red solution was cooled to 4°C (12 h), giving orange crystalline blocks of 1. These were isolated and dried under vacuum (30 min, 10⁻¹ atm). Crystalline yield 40 mg, 36 %. ¹H NMR (+25°C, [D₈]THF, 500.05 MHz): $\delta = 8.57$ (m, 2H, C(3,6)-H aromatic), 6.69 (m, 2H, C(4,5)-H aromatic), 2.27 (s, ca. 8H, -CH₂tmeda), 2.12 ppm (s, ca. 24H, Me₂N tmeda). Elemental analysis (%) calcd for C₆H₄LiP₂Sb·2 C₆H₁₆N₂: C 43.3, H 7.3, N 11.2, P 12.4; found: C 41.2. H 7.0. N 9.0. P 13.0. For 1-0.5 tmeda: calcd C 40.8. H 6.4. N 9.5, P 14.0 (suggesting that some of the tmeda is liberated by placing 1 under vacuum during isolation).

2: The same quantities and molar equivalents of reagents were used as for 1, except that toluene (5.0 mL) was used in place of tmeda. The reaction of the lithiated phosphine with Sb(NMe₂)₃ gave a dark brown solution and precipitate, which dissolved on addition of tmeda (0.32 mL, 2.14 mmol). The solution was stored at 4°C overnight to yield black, block-shaped crystals of 2. The crystals were isolated and dried under vacuum (30 min, 10^{-1} atm). Crystalline yield 60 mg, 28%. Elemental analysis (%) calcd for $C_{12}H_4P_4Sb_2\cdot 4C_4H_{12}N_2\cdot 3C_7H_8$: C 53.1, H 7.5, N 8.7, P 9.6; found: C 50.5, H 7.2, N 8.5, P 11.3. For **2**·3 toluene: calcd C 53.2, H 7.2, N 8.7, P 9.6 (for 2-2.5 toluene: calcd C 51.8, H 7.1, N 9.0, P 10.0, suggesting that about half of the toluene is lost during isolation of 2 under vacuum).

Received: June 14, 2007 Published online: September 4, 2007

Keywords: antimony · density functional calculations · phosphorus · radicals · X-ray diffraction

- [1] M. A. Beswick, D. S. Wright, Coord. Chem. Rev. 1998, 176, 373; A. D. Hopkins, J. A. Wood, D. S. Wright, Coord. Chem. Rev. 2001, 216, 155.
- [2] For example: R. E. Mulvey, Chem. Commun. 2001, 1049.
- [3] M. McPartlin, A. D. Woods, C. M. Pask, T. Vogler, D. S. Wright, Chem. Commun. 2003, 1524.
- S. M. Humphreys, R. A. Kowenicki, C. M. Pask, M. McPartlin, A. D. Woods, D. S. Wright, Angew. Chem. 2005, 117, 3522; Angew. Chem. Int. Ed. 2005, 44, 3456.
- [5] J. M. Rawson, A. Alberola, A. Whalley, J. Mater. Chem. 2006, 16,
- [6] Prolonged stirring of this solution at room temperature produces the known Zintl compound [Sb₇Li₃·3 tmeda] (3); M. A. Beswick, C. N. Harmer, A. D. Hopkins, M. McPartlin, D. S. Wright, Science 1998, 281, 1500.
- [7] For example: J. Tabernor, L. F. Jones, S. L. Heath, C. Muryn, G. Aromí, J. Ribas, E. K. Brechin, D. Collison, Dalton Trans. 2004,
- [8] The analogous reaction with As(NMe₂)₃ failed to produce this anion; M. A. Paver, J. S. Joy, M. B. Hursthouse, Chem. Commun. 2001, 2480.
- [9] 1: $C_{18}H_{36}LiN_4P_2Sb$, $M_r = 499.14$, orthorhombic, space group Pmn2(1), Z = 4, a = 37.4633(12), b = 21.3225(7), c =9.4221(3) Å, $V = 7526.5(4) \text{ Å}^3$, $\mu(\text{Mo}_{K\alpha}) = 1.236 \text{ mm}^{-1}$, $\rho_{\text{calcd}} =$ 1.321 Mg m⁻³, T = 180(2) K. Total reflections 9525, unique 4357 $(R_{\text{int}} = 0.033)$. The only crystal that could be obtained diffracted poorly and data in the limited θ -range <21° were used in refinement. Satisfactory refinement was also hampered by parameter correlations between the four independent ion pairs, and considerable disorder of two of the [Li(tmeda),]+ counterions which had C_s symmetry. To prevent a non-positivedefinite displacement parameter, the carbon atoms of the counterions were refined with isotropic ADP. $R_1 = 0.088$ [I> $2\sigma(I)$] and $wR_2 = 0.224$ (all data). **2**·3 toluene: $C_{57}H_{96}Li_4N_8P_4Sb_2$, $M_r = 1288.55$, triclinic, space group $P\bar{1}$, Z = 4, a = 15.0756(2), b =16.1753(3), c = 17.2153(3) Å, $\alpha = 89.7980(10)$, $\beta = 68.4000(10)$, $\gamma = 64.0050(10)^{\circ}$, $V = 3445.19(10 \text{ Å}^3$, $\mu(\text{Mo}_{K\alpha}) = 0.915 \text{ mm}^{-1}$, $\rho_{\text{calcd}} = 1.241 \text{ Mg m}^{-3}, T = 180(2) \text{ K}.$ Total reflections 39499, unique 14955 ($R_{\text{int}} = 0.039$). Two of the three toluene solvate molecules were disordered. One showed about 70:30% overlap of two components and one showed a ca. 50:50% rotational disorder (the two components differing in the position of the CH₃ substituent). There was also evidence of some disorder of the tmeda ligands but only one CH₂ group was resolved. R_1 =

7829

Communications

- 0.043 $[I > 2\sigma(I)]$ and $wR_2 = 0.110$ (all data). Data were collected on a Nonius KappaCCD diffractometer and solved by direct methods and refined by full-matrix least squares on F^2 (G. M. Sheldrick, *SHELX-97*, Göttingen, Germany, **1997**). CCDC-650551 (1) and CCDC-650552 (2) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [10] M. A. Beswick, J. M. Goodman, C. N. Harmer, A. D. Hopkins, M. A. Paver, P. R. Raithby, A. E. H. Wheatley, *Chem. Commun.* 1997, 1879.
- [11] M. A. Beswick, N. Choi, A. D. Hopkins, M. McPartlin, M. E. G. Mosquera, P. R. Raithby, A. Rothenberger, D. Stalke, A. E. H. Wheatley, D. S. Wright, J. Chem. Soc. Chem. Commun. 1998, 2485.
- [12] P. Jutzi, S. Opiela, M. M. Olmstead, P. P. Power, *Organometallics* 1990, 9, 1459.
- [13] S. Brownridge, H. Du, S. A. Fairhurst, R. C. Haddon, H. Oberhammer, S. Parsons, J. Passmore, M. J. Schriver, L. H. Sutcliffe, N. C. P. Westwood, *Dalton Trans.* 2003, 3365; G. Wolmershäuser, G. Kraft, *Chem. Ber.* 1990, 123, 881; A. Alberola, R. J. Collis, S. M. Humphrey, R. J. Less, J. M. Rawson, *Inorg. Chem.* 2006, 45, 1903.

- [14] E. G. Awere, N. Burford, R. C. Haddon, S. Parsons, J. Passmore, *Inorg. Chem.* **1990**, 29, 4821.
- [15] J. E. Huheey, E. A. Keeter, R. L. Keiter, *Inorganic Chemistry*, Principles of Structure and Reactivity, 4th ed., Harper Collins, New York, 1993.
- [16] For example: O. Mundt, G. Becker, H.-J. Wessley, H. J. Breunig, H. Kischkel, Z. Anorg. Allg. Chem. 1982, 486, 70; A. J. Ashe III, E. G. Ludwig, Jr., J. Oleksyszyn, J. C. Huffman, Organometallics 1984, 3, 337; H. J. Breunig, R. Rösler, E. Lork, Organometallics 1998, 17, 5594.
- [17] For example: A. Bashall, F. García, G. T. Lawson, M. McPartlin, A. Rothenberger, A. E. H. Wheatley, D. S. Wright, Can. J. Chem. 2002, 80, 1421.
- [18] DFT calculations using the GAMESS-UK software [19] utilizing the B3LYP functional [20] and all-electron DZVP basis set. [21]
- [19] M. F. Guest, I. J. Bush, H. J. J. van Dam, P. Sherwood, J. M. H. Thomas, J. H. van Lenthe, R. W. A. Havenith, J. Kendrick, *Mol. Phys.* 2005, 103, 719.
- [20] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
- [21] N. Godbout, D. R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 1992, 70, 560.